Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning

Int J Mol Sci. 2023 Sep 22;24(19):14429. doi: 10.3390/ijms241914429.

Abstract

Small nucleolar RNAs (snoRNAs) constitute a prevalent class of noncoding RNAs localized within the nucleoli of eukaryotic cells. Their involvement in diverse diseases underscores the significance of forecasting associations between snoRNAs and diseases. However, conventional experimental techniques for such predictions suffer limitations in scalability, protracted timelines, and suboptimal success rates. Consequently, efficient computational methodologies are imperative to realize the accurate predictions of snoRNA-disease associations. Herein, we introduce GCLSDA-graph Convolutional Network and contrastive learning predict snoRNA disease associations. GCLSDA is an innovative framework that combines graph convolution networks and self-supervised learning for snoRNA-disease association prediction. Leveraging the repository of MNDR v4.0 and ncRPheno databases, we construct a robust snoRNA-disease association dataset, which serves as the foundation to create bipartite graphs. The computational prowess of the light graph convolutional network (LightGCN) is harnessed to acquire nuanced embedded representations of both snoRNAs and diseases. With careful consideration, GCLSDA intelligently incorporates contrast learning to address the challenging issues of sparsity and over-smoothing inside correlation matrices. This combination not only ensures the precision of predictions but also amplifies the model's robustness. Moreover, we introduce the augmentation technique of random noise to refine the embedded snoRNA representations, consequently enhancing the precision of predictions. Within the domain of contrast learning, we unite the tasks of contrast and recommendation. This harmonization streamlines the cross-layer contrast process, simplifying the information propagation and concurrently curtailing computational complexity. In the area of snoRNA-disease associations, GCLSDA constantly shows its promising capacity for prediction through extensive research. This success not only contributes valuable insights into the functional roles of snoRNAs in disease etiology, but also plays an instrumental role in identifying potential drug targets and catalyzing innovative treatment modalities.

Keywords: bipartite graph; contrastive learning; graph convolutional network; snoRNA–disease association.

MeSH terms

  • Computational Biology* / methods
  • Databases, Factual
  • RNA, Small Nucleolar* / genetics
  • RNA, Untranslated

Substances

  • RNA, Small Nucleolar
  • RNA, Untranslated