Insight into the effect mechanism of sedimentary record of polycyclic aromatic hydrocarbon: Isotopic evidence for lake organic matter deposition and regional development model

Environ Res. 2023 Dec 15;239(Pt 1):117380. doi: 10.1016/j.envres.2023.117380. Epub 2023 Oct 11.

Abstract

Deciphering the temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in sediment cores, and the effect mechanism of sedimentary organic matter (OM) and regional development model on PAHs are crucial for pollution control and environmental management. Herein, sediment core was collected from Chenhu international wetland in Wuhan, central China. Meanwhile, historical trend and source of PAHs and sedimentary OM were presented, respectively. Result demonstrated that the most significant growth of PAHs (increased by 158.8%) was attributed to the significant enhancement of traffic emission (5.57 times), coal combustion (4.59 times), and biomass burning (8.09 times). Similarly, the percentage of phytoplankton (stage Ⅲ: 37.9%; stage Ⅳ: 31.2%) and terrestrial C3 plants (stage Ⅲ: 24.6%; stage Ⅳ: 29.2%) to sedimentary OM hold the dominant position after the stage Ⅱ. The obvious shifts of historical trend and sources in PAHs were highly related to economic development models (r = 0.72, p < 0.001) and sedimentary OM (r = 0.82, p < 0.001). It demonstrated that eutrophication of lake accelerated the burial of PAHs. Redundancy analysis results suggested that TOC was dominating driver of sedimentary PAHs (16.56%) and phytoplankton occupied 9.58%. To further confirm the significant role of economic development models, three different historical trends of PAHs in different regions of China were presented. The result of this study provides the new insight into the geochemistry mechanism of lake sedimentary OM and PAHs. Meanwhile, the relationship of regional development model and sedimentary PAHs was highlighted in this study. Significantly, the main environmental implications of this study are as follows: (1) lake eutrophication of phytoplankton OM accelerated the burial of PAHs in lake sediment; (2) economic development models and energy structure significantly influence the sedimentary PAHs. This study highlights the coupling relationship between OM burial and PAHs sedimentation, and the importance of accelerating the transformation of economic energy structure.

Keywords: Eutrophication; Geographic patterns; PAHs; Sedimentary core; Sedimentary organic matter.

MeSH terms

  • Biomass
  • China
  • Coal
  • Lakes*
  • Phytoplankton
  • Polycyclic Aromatic Hydrocarbons*

Substances

  • Coal
  • Polycyclic Aromatic Hydrocarbons