Retinoid X Receptor Activation Prevents Diabetic Retinopathy in Murine Models

Cells. 2023 Sep 26;12(19):2361. doi: 10.3390/cells12192361.

Abstract

Previously, the RXR agonist UAB126 demonstrated therapeutic potential to treat obese mice by controlling blood glucose levels (BGL) and altering the expression of genes associated with lipid metabolism and inflammatory response. The purpose of the study was to assess the effects of UAB126 on the progression of diabetic retinopathy (DR) in rodent models of type 1 diabetes (T1D), streptozotocin-induced, and type 2 diabetes (T2D), in db/db mice. UAB126 treatment was delivered either by oral gavage for 6 weeks or by topical application of eye drops for 2 weeks. At the end of the treatment, the retinal function of diabetic mice was assessed by electroretinography (ERG), and their retinal tissue was harvested for protein and gene expression analyses. Bone-marrow cells were isolated and differentiated into bone marrow-derived macrophages (BMDMs). The glycolysis stress test and the 2-DG glucose uptake analysis were performed. Our results demonstrated that in the UAB126-treated diabetic BMDMs, the ECAR rate and the 2-DG uptake were improved as compared to untreated diabetic BMDMs. In UAB126-treated diabetic mice, hyperglycemia was reduced and associated with the preservation of ERG amplitudes and enhanced AMPK activity. Retinas from diabetic mice treated with topical UAB126 demonstrated an increase in Rxr and Ppar and the expression of genes associated with lipid metabolism. Altogether, our data indicate that RXR activation is beneficial to preclinical models of DR.

Keywords: UAB126; diabetic retinopathy; murine model; retinoid X receptor.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental* / metabolism
  • Diabetes Mellitus, Type 2* / metabolism
  • Diabetic Retinopathy* / drug therapy
  • Diabetic Retinopathy* / metabolism
  • Diabetic Retinopathy* / prevention & control
  • Disease Models, Animal
  • Mice
  • Retinoid X Receptors

Substances

  • Retinoid X Receptors