Astrocyte interferon-gamma signaling dampens inflammation during chronic central nervous system autoimmunity via PD-L1

J Neuroinflammation. 2023 Oct 12;20(1):234. doi: 10.1186/s12974-023-02917-4.

Abstract

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.

Keywords: Astrocyte; Interferon; Multiple sclerosis.

MeSH terms

  • Animals
  • Astrocytes / metabolism
  • Autoimmunity
  • B7-H1 Antigen* / metabolism
  • Central Nervous System / pathology
  • Encephalomyelitis, Autoimmune, Experimental* / pathology
  • Humans
  • Inflammation / metabolism
  • Interferon-gamma* / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Multiple Sclerosis* / pathology
  • Neurodegenerative Diseases* / metabolism
  • Programmed Cell Death 1 Receptor / metabolism

Substances

  • B7-H1 Antigen
  • Interferon-gamma
  • Programmed Cell Death 1 Receptor