Localisation of eloquent cortex using magnetoencephalography and its clinical implications

Int J Neurosci. 2023 Oct 12:1-13. doi: 10.1080/00207454.2023.2270684. Online ahead of print.

Abstract

Objectives: This study aimed to localise the eloquent cortex and measure evoked field (EF) parameters using magnetoencephalography in patients with epilepsy and tumours near the eloquent cortex.

Methods: A total of 41 patients (26 with drug-refractory epilepsy and 15 with tumours), with a mean age of 33 years, were recruited. Visual evoked field (VEF), auditory evoked field (AEF), sensory evoked field (SSEF), and motor-evoked field (MEF) latencies, amplitudes, and localisation were compared with those of a control population. Subgroup analyses were performed based on lobar involvement. Evoked Field parameters on the affected side were compared with those on the opposite side. The effect of distance from the lesion on nearby and distant evoked fields was evaluated.

Results: AEF and VEF amplitudes and latencies were reduced bilaterally (p < 0.05). Amplitude in the ipsilateral SSEF was reduced by 29.27% and 2.16% in the AEF group compared to the contralateral side (p = 0.02). In patients with temporal lobe lesions, the SSEF amplitude was reduced bilaterally (p < 0.02), and latency was prolonged compared with controls. The MEF amplitude was reduced and latency was prolonged in patients with frontal lobe lesions (p = 0.01). EF displacement was 32%, 57%, 21%, and 16% for AEF, MEF, VEF, and SSEF respectively. Patients in the epilepsy group had distant EF abnormalities.

Conclusions: EF amplitude was reduced and latency was prolonged in the involved hemisphere. Distant EF amplitudes were more affected than latencies in epilepsy. Amplitude and distance from the lesion had negative correlation for all EF. EF changes indicated eloquent cortical displacement which may not be apparent on MRI.

Keywords: Eloquent cortex; epilepsy surgery; evoked fields; magnetic source imaging; magnetoencephalography.