Nonclinical safety assessment and immunogenicity of rVSVInd(GML)-mspSGtc vaccine for SARS-CoV-2 in rabbits

Vaccine. 2023 Oct 9:S0264-410X(23)01178-7. doi: 10.1016/j.vaccine.2023.10.008. Online ahead of print.

Abstract

The worldwide health, economic, and societal consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have been devastating. The primary strategy to prevent new infectious diseases is to vaccinate the majority of people worldwide. However, the significant hurdles that are faced include vaccine safety concerns and vaccine reluctance. Among the various types of vaccines, the recombinant vesicular stomatitis virus (rVSV) is a promising candidate owing to its safety and efficacy. Therefore, we investigated the toxicity, immunogenicity, and local tolerance of the rVSVInd(GML)-mspSGtc vaccine against SARS-CoV-2. New Zealand White (NZW) rabbits were administered single or three repeated intramuscular injections of rVSVInd(GML)-mspSGtc every 2 weeks, followed by a 4-week recovery period. Male and female rabbits were randomly assigned into three groups: a control group and two dose-level groups (1 × 109 and 4 × 109 PFU/mL). Treatment-related changes included a temporary increase in body temperature and local inflammation at the injection site. These findings indicated recovery or a trend toward recovery, with no overt systemic toxicity. Immunogenicity analysis results suggested that rVSVInd(GML)-mspSGtc elicited a robust dose-dependent immune response in terms of neutralizing antibodies and IgG antibodies against the SARS-CoV-2 spike protein. In addition, the immune response intensity was increased by repeated vaccine administration. In conclusion, both the approximate lethal dose and the no observed adverse effect level for rVSVInd(GML)-mspSGtc exceeded 4 × 109 PFU/mL in NZW rabbits. Overall, rVSVInd(GML)-mspSGtc induced no adverse effects at the maximum dosage tested; however, its efficacy warrants further clinical evaluation.

Keywords: No observed adverse effect level; Rabbit; SARS-CoV-2; rVSV vaccine; rVSVInd(GML)-mspSGtc.