Physiological and Subjective Measures of Anxiety with Repeated Exposure to Virtual Construction Sites at Different Heights

Saf Health Work. 2023 Sep;14(3):303-308. doi: 10.1016/j.shaw.2023.07.005. Epub 2023 Jul 28.

Abstract

Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety.

Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance.

Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs.

Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

Keywords: Ergonomic; Falls; Virtual reality (VR).