Cortical growth from infancy to adolescence in preterm and term-born children

Brain. 2024 Apr 4;147(4):1526-1538. doi: 10.1093/brain/awad348.

Abstract

Early life experiences can exert a significant influence on cortical and cognitive development. Very preterm birth exposes infants to several adverse environmental factors during hospital admission, which affect cortical architecture. However, the subsequent consequence of very preterm birth on cortical growth from infancy to adolescence has never been defined; despite knowledge of critical periods during childhood for establishment of cortical networks. Our aims were to: chart typical longitudinal cortical development and sex differences in cortical development from birth to adolescence in healthy term-born children; estimate differences in cortical development between children born at term and very preterm; and estimate differences in cortical development between children with normal and impaired cognition in adolescence. This longitudinal cohort study included children born at term (≥37 weeks' gestation) and very preterm (<30 weeks' gestation) with MRI scans at ages 0, 7 and 13 years (n = 66 term-born participants comprising 34 with one scan, 18 with two scans and 14 with three scans; n = 201 very preterm participants comprising 56 with one scan, 88 with two scans and 57 with three scans). Cognitive assessments were performed at age 13 years. Cortical surface reconstruction and parcellation were performed with state-of-the-art, equivalent MRI analysis pipelines for all time points, resulting in longitudinal cortical volume, surface area and thickness measurements for 62 cortical regions. Developmental trajectories for each region were modelled in term-born children, contrasted between children born at term and very preterm, and contrasted between all children with normal and impaired cognition. In typically developing term-born children, we documented anticipated patterns of rapidly increasing cortical volume, area and thickness in early childhood, followed by more subtle changes in later childhood, with smaller cortical size in females than males. In contrast, children born very preterm exhibited increasingly reduced cortical volumes, relative to term-born children, particularly during ages 0-7 years in temporal cortical regions. This reduction in cortical volume in children born very preterm was largely driven by increasingly reduced cortical thickness rather than area. This resulted in amplified cortical volume and thickness reductions by age 13 years in individuals born very preterm. Alterations in cortical thickness development were found in children with impaired language and memory. This study shows that the neurobiological impact of very preterm birth on cortical growth is amplified from infancy to adolescence. These data further inform the long-lasting impact on cortical development from very preterm birth, providing broader insights into neurodevelopmental consequences of early life experiences.

Keywords: longitudinal; magnetic resonance imaging; neurodevelopment; very preterm birth.

MeSH terms

  • Adolescent
  • Brain / diagnostic imaging
  • Child
  • Child, Preschool
  • Cognition
  • Female
  • Gestational Age
  • Humans
  • Infant
  • Infant, Newborn
  • Longitudinal Studies
  • Magnetic Resonance Imaging / methods
  • Male
  • Premature Birth*