Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases

Eur J Radiol. 2023 Nov:168:111128. doi: 10.1016/j.ejrad.2023.111128. Epub 2023 Sep 29.

Abstract

Objective: To explore whether reduced-dose (RD) gemstone spectral imaging (GSI) and deep learning image reconstruction (DLIR) of 40 keV virtual monoenergetic image (VMI) enhanced the early detection and diagnosis of colorectal cancer liver metastases (CRLM).

Methods: Thirty-five participants with pathologically confirmed colorectal cancer were prospectively enrolled from March to August 2022 after routine care abdominal computed tomography (CT). GSI mode was used for contrast-enhanced CT, and two portal venous phase CT images were obtained [standard-dose (SD) CT dose index (CTDIvol) = 15.51 mGy, RD CTDIvol = 7.95 mGy]. The 40 keV-VMI were reconstructed via filtered back projection (FBP) and iterative reconstruction (ASIR-V 60 %, AV60) of both SD and RD images. RD medium-strength deep learning image reconstruction (DLIR-M) and RD high-strength deep learning image reconstruction (DLIR-H) were used to reconstruct the 40 keV-VMI. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the liver and the lesions were objectively evaluated. The overall image quality, lesion conspicuity, and diagnostic confidence were subjectively evaluated, to compare the differences in evaluation results among the different images.

Results: All 35 participants (mean age: 59.51 ± 11.01 years; 14 females) underwent SD and RD GSI portal venous-phase CT scans. The dose-length product of the RD GSI scan was reduced by 49-53 % lower than that of the SD GSI scan (420.22 ± 31.95) vs (817.58 ± 60.56). A total of 219 lesions were identified, including 55 benign lesions and 164 metastases, with an average size of 7.37 ± 4.14 mm. SD-FBP detected 207 lesions, SD-AV60 detected 201 lesions, and DLIR-M and DLIR-H detected 199 and 190 lesions, respectively. For lesions ≤ 5 mm, there was no statistical difference between SD-FBP vs DLIR-M (χ2McNemar = 1.00, P = 0.32) and SD-AV60 vs DLIR-M (χ2McNemar = 0.33, P = 0.56) in the detection rate. The CNR, SNR, and noise of DLIR-M and DLIR-H 40 keV-VMI images were better than those of SD-FBP images (P < 0.01) but did not differ significantly from those of SD-AV60 images (P > 0.05). When the lesions ≤ 5 mm, there were statistical differences in the overall diagnostic sensitivity of lesions compared with SD-FBP, SD-AV60, DLIR-M and DLIR-H (P<0.01). There were no statistical differences in the sensitivity of lesions diagnosis between SD-FBP, SD-AV60 and DLIR-M (both P>0.05). However, the DLIR-M subjective image quality and lesion diagnostic confidence were higher for SD-FBP (both P < 0.01).

Conclusion: Reduced dose DLIR-M of 40 keV-VMI can be used for routine follow-up care of colorectal cancer patients, to optimize evaluations and ensure CT image quality. Meanwhile, the detection rate and diagnostic sensitivity and specificity of small lesions, early liver metastases is not obviously reduced.

Keywords: Colorectal cancer liver metastasis; Deep learning imaging reconstruction; Filtered back projection; Iterative reconstruction; Spectral CT.

MeSH terms

  • Aged
  • Algorithms
  • Colorectal Neoplasms* / diagnostic imaging
  • Colorectal Neoplasms* / pathology
  • Deep Learning*
  • Early Detection of Cancer
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Liver Neoplasms* / diagnostic imaging
  • Liver Neoplasms* / secondary
  • Middle Aged
  • Radiation Dosage
  • Radiographic Image Interpretation, Computer-Assisted / methods