Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair

Acta Biomater. 2023 Dec:172:297-308. doi: 10.1016/j.actbio.2023.10.008. Epub 2023 Oct 7.

Abstract

Articular cartilage lacks natural healing abilities and necessitates surgical treatments for injuries. While microfracture (MF) is a primary surgical approach, it often results in the formation of unstable fibrocartilage. Delivering hyaline cartilage directly to defects poses challenges due to the limited availability of autologous cartilage and difficulties associated with allogeneic cartilage delivery. We developed a decellularized allogeneic cartilage paste (DACP) using human costal cartilage mixed with a crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC) carrier. The decellularized allogeneic cartilage preserved the extracellular matrix and the nanostructure of native hyaline cartilage. The crosslinked HA-CMC carrier provided shape retention and moldability. In vitro studies confirmed that DACP did not cause cytotoxicity and promoted migration, proliferation, and chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. After 6 months of implantation in rabbit knee osteochondral defects, DACP combined with MF outperformed MF alone, demonstrating improved gait performance, defect filling, morphology, extracellular matrix deposition, and biomechanical properties similar to native cartilage. Thus, DACP offers a safe and effective method for articular cartilage repair, representing a promising augmentation to MF. STATEMENT OF SIGNIFICANCE: Directly delivering hyaline cartilage to repair articular cartilage defects is an ideal treatment. However, current allogeneic cartilage products face delivery challenges. In this study, we developed a decellularized allogeneic cartilage paste (DACP) by mixing human costal cartilage with crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC). DACP preserves extracellular matrix components and nanostructures similar to native cartilage, with HA-CMC ensuring shape retention and moldability. Our study demonstrates improved cartilage repair by combining DACP with microfracture, compared to microfracture alone, in rabbit knee defects over 6 months. This is the first report showing better articular cartilage repair using decellularized allogeneic cartilage with microfracture, without the need for exogenous cells or bioactive substances.

Keywords: Articular cartilage repair; Carrier; Decellularized allogeneic cartilage; Extracellular matrix; Microfracture.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carboxymethylcellulose Sodium / pharmacology
  • Cartilage, Articular*
  • Costal Cartilage*
  • Fractures, Stress*
  • Hematopoietic Stem Cell Transplantation*
  • Humans
  • Hyaluronic Acid / chemistry
  • Hyaluronic Acid / pharmacology
  • Rabbits

Substances

  • Hyaluronic Acid
  • Carboxymethylcellulose Sodium