High sensitivity flow cytometry immunophenotyping increases the diagnostic yield of malignant pleural effusions

Clin Exp Metastasis. 2023 Dec;40(6):505-515. doi: 10.1007/s10585-023-10236-4. Epub 2023 Oct 9.

Abstract

Diagnosing malignant pleural effusions (MPE) is challenging when patients lack a history of cancer and cytopathology does not detect malignant cells in pleural effusions (PE). We investigated whether a systematic analysis of PE by flow cytometry immunophenotyping (FCI) had any impact on the diagnostic yield of MPE. Over 7 years, 570 samples from patients with clinical suspicion of MPE were submitted for the FCI study. To screen for epithelial malignancies, a 3-color FCI high sensitivity assay was used. The FCI results, qualified as "malignant" (FCI+) or "non-malignant" (FCI-), were compared to integrated definitive diagnosis established by clinicians based on all available information. MPE was finally diagnosed in 182 samples and FCI detected 141/182 (77.5%). Morphology further confirmed FCI findings by cytopathology detection of malignant cells in PE (n = 91) or histopathology (n = 29). Imaging tests and clinical history supported the diagnosis in the remaining samples. The median percentage of malignant cells was 6.5% for lymphoma and 0.23% for MPE secondary to epithelial cell malignancies. FCI identified a significantly lower percentage of EpCAM+ cells in cytopathology-negative MPE than in cytopathology-positive cases (0.02% vs. 1%; p < 0.0001). Interestingly, 29/52 MPE (55.8%) where FCI alerted of the presence of malignant cells were new diagnosis of cancer. Overall, FCI correctly diagnosed 456/522 samples (87.4%) suitable for comparison with cytopathology. These findings show that high sensitivity FCI significantly increases the diagnostic yield of MPE. Early detection of FCI + cases accelerates the diagnostic pathway of unsuspected MPE, thus supporting its implementation in clinical diagnostic work-up as a diagnostic tool.

Keywords: EpCAM; Flow cytometry; Immunophenotype; Lymphoma; Malignant pleural effusions.

MeSH terms

  • Flow Cytometry / methods
  • Humans
  • Immunophenotyping
  • Pleural Effusion, Malignant* / diagnosis