A survey on the mechanical design for piezo-actuated compliant micro-positioning stages

Rev Sci Instrum. 2023 Oct 1;94(10):101502. doi: 10.1063/5.0162246.

Abstract

This paper presents a comprehensive review of mechanical design and synthesis methods for piezo-actuated compliant micro-positioning stages, which play an important role in areas where high precision motion is required, including bio-robotics, precision manufacturing, automation, and aerospace. Unlike conventional rigid-link mechanisms, the motion of compliant mechanisms is realized by using flexible elements, whereby deformation requires no lubrication while achieving high movement accuracy without friction. As compliant mechanisms differ significantly from traditional rigid mechanisms, recent research has focused on investigating various technologies and approaches to address challenges in the flexure-based micro-positioning stage in the aspects of synthesis, analysis, material, fabrication, and actuation. In this paper, we reviewed the main concepts and key advances in the mechanical design of compliant piezo-actuated micro-positioning stages, with a particular focus on flexure design, kineto-static modeling, actuators, material selection, and functional mechanisms including amplification and self-guiding ones. We also identified the key issues and directions for the development trends of compliant micro-positioning stages.