Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol

Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202310788. doi: 10.1002/anie.202310788. Epub 2023 Oct 31.

Abstract

The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2 R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2 R, a two-step process, with first CO2 R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2 .

Keywords: Bimetallic CuAg; CO Electroreduction; Flow Electrolyzer; Nitride Derived CuAg Catalyst.