To Be or Not To Be Polar: The Ferroelectric and Antiferroelectric Nematic Phases

ACS Omega. 2023 Sep 18;8(39):36562-36568. doi: 10.1021/acsomega.3c05884. eCollection 2023 Oct 3.

Abstract

We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.