Phosphorus recovery from agricultural waste via cactus pear biomass

Heliyon. 2023 Sep 12;9(9):e19996. doi: 10.1016/j.heliyon.2023.e19996. eCollection 2023 Sep.

Abstract

In this study, the potential of cactus pear pruning waste (CPPW) as a low-cost adsorbent biomass for phosphorus (P) removal from aqueous solutions was investigated in batch mode. Biomass samples derived from cactus pear were collected and analyzed to investigate their properties when enriched with either calcium (Ca) or iron (Fe). The examination focused on the capacity of these samples to remove P. The P removal capacities were determined to be 2.27 mg g-1, 1.33 mg g-1, and 1.87 mg g-1 for Ca2+-enriched, Fe2+-loaded, and Fe3+-loaded biomass respectively. Among the various models studied, the Langmuir isotherm model was identified as the most appropriate for accurately describing the P adsorption the enriched biomass. The kinetics of the adsorption process were analyzed by applying the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The pseudo-second-order model provided the best fit to the experimental data. Furthermore, the desorption and regeneration process was investigated, revealing minimal P desorption (less than 8%) from Ca or Fe-loaded biomass, indicating the strong stability of the biomass-cation-P system. The estimated cost ranged from 8 to 161 euros per tonne, with an additional 230 euros when considering the pruning costs inherent to the crop. These costs fall below the threshold (320 euros per tonne) for the economically viable P reuse at the farm level. Consequently, CPPW, when reduced to powder and loaded with ions, emerges as an affordable adsorbent with good removal performance, offering a promising avenue for direct utilization in agriculture as both soil conditioner and fertiliser.

Keywords: Adsorption; Agricultural waste; Circular economy; Desorption; Opuntia ficus-indica.