Elemental distribution and source analysis of atmospheric aerosols from Meycauayan, Bulacan, Philippines

Heliyon. 2023 Aug 29;9(9):e19459. doi: 10.1016/j.heliyon.2023.e19459. eCollection 2023 Sep.

Abstract

One of the industrialized cities in the Philippines is Meycauayan, Bulacan. This study reports the elemental distribution and source apportionment in eight varying land cover-land use type sampling points located along the Marilao-Meycauayan- Obando Rivers System. Elemental analysis was conducted using a scanning electron microscope coupled with energy dispersive x-ray. Cu, Pb, Zn, Cr, Mn, As, Cd, Co, Fe, Ni, Ti, and V concentrations were determined using Inductively Coupled Plasma Mass Spectrometry, and Hg concentrations by Mercury analyzer. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and Pearson's r correlation were used to analyze different sources of heavy metals and its corresponding land use-land cover type. The aerosol samples showed the presence of heavy metals Pb and Hg, elements that were also detected in trace amounts in the water measurements. Concentrations of heavy metals such as Cu, Fe, Pb, Zn, V, Ni, and As found in the atmospheric aerosols and urban dusts were attributed to anthropogenic sources such as residential, commercial and industrial wastes. Other source of aerosols in the area were traffic and crustal emissions in Meycauayan. Using HCA, there are 3 clusters observed based on the similar sets of heavy metals: (1) AQS1 (Caingin), AQS2 (Banga), and AQS8 (Malhacan); (2) AQS3(Calvario), AQS4 (Camalig), and AQS5(Langka); (3) AQS1(Sto Nino-Perez), and (AQS7) (Sterling). These groups are related based on different land use setting such as residential/commercial, agricultural, and commercial/industrial areas. Our study recommends the need to address heavy metal pollution in Meycauayan in support to the ongoing implementation of laws and regulations by the local and private sectors.

Keywords: Atmospheric aerosols; Heavy metal assessment; Land use; Meycauayan; Urban dusts.