Fasudil and SR1001 synergistically protect against sepsis-associated pancreatic injury by inhibiting RhoA/ROCK pathway and Th17/IL-17 response

Heliyon. 2023 Sep 18;9(9):e20118. doi: 10.1016/j.heliyon.2023.e20118. eCollection 2023 Sep.

Abstract

Sepsis is defined as a dysregulated host response to infection that can result in organ dysfunction and high mortality, which needs more effective treatment urgently. Pancreas is one of the most vulnerable organs in sepsis, resulting in sepsis-associated pancreatic injury, which is a fatal complication of sepsis. The aim of this study was to investigate the effect of combination of fasudil and SR1001 on sepsis-associated pancreatic injury and to explore the underlying mechanisms. The model of sepsis-associated pancreatic injury was induced by cecal ligation and puncture. Pancreatic injury was evaluated by HE staining, histopathological scores and amylase activity. The frequency of Th17 cells was analyzed by flow cytometry. Serum IL-17 level was determined by ELISA. Protein levels of RORγt, p-STAT3, GEF-H1, RhoA and ROCK1 were determined by Western blot. The apoptosis of pancreatic cells was examined by TUNEL analysis and Hoechst33342/PI staining. Compared to the sham group, the model group showed significant pathological injury including edema, hyperemia, vacuolization and necrosis. After treatment with fasudil, model mice showed an obvious reduction of Th17 cells and IL-17. SR1001 significantly reduced the expressions of GEF-H1, RhoA and ROCK1 in the model mice. The combination treatment with fasudil and SR1001 significantly inhibited the differentiation of Th17 cells, expressions of IL-17, GEF-H1, RhoA and ROCK1, which were more effective than each mono-treatment. In addition, our data revealed a remarkable decrease of apoptosis in pancreatic acinar cells culturing with fasudil or SR1001, which was further inhibited by their combination culture. Lipopolysaccharide remarkably upregulated the differentiation of Th17 cells in vitro, which could be significantly downregulated by fasudil or SR1001, and further downregulated by their combination treatment. Taken together, the combination of fasudil with SR1001 has a synergistic effect on protecting against sepsis-associated pancreatic injury in C57BL/6 mice.

Keywords: Fasudil; Pancreatic injury; SR1001; Sepsis; Synergetic effects.