Effects of modified elastin-collagen matrix on the thermal and mechanical properties of Poly (lactic acid)

Heliyon. 2023 Aug 29;9(9):e19598. doi: 10.1016/j.heliyon.2023.e19598. eCollection 2023 Sep.

Abstract

Poly (lactic acid) (PLA) has distinctive characteristics, including biodegradability, biocompatibility, thermal process ability, high transparency and good film-forming ability. However, PLA has some poor properties that limit its wide applicability. These properties include a low crystallization rate, poor thermal stability, and high brittleness. The main objective of this research was to investigate the effect of a modified elastin-collagen (m-ELA-COLL) matrix on the properties of PLA. The ELA-COLL matrix was extracted from broiler skin waste and modified by grafting using lactic acid monomer to facilitate compatibility with PLA. The extracted and modified ELA-COLL matrix was investigated using FTIR, and α-helix and β-sheet structures were confirmed in both cases (pre- and post-modifications). Modified elastin-collagen dispersed Poly (lactic acid) (PLA-m-ELA-COLL) blend films were prepared using the solution casting method and characterized using DSC and UTM. The effect of m-ELA-COLL as a nucleating agent resulted in the degree of crystallinity improvement of 58.8% with 10 wt% m-ELA/COLL loading, and the elongation at break was improved by 161.3% for PLA-40%-m-ELA-COLL with a tensile strength of 33.75 MPa. The results obtained revealed that the biofilms can be considered as a good candidate to be studied further in the packaging industry.

Keywords: Biofilms; Crystallinity; Mechanical properties; Modified elastin-collagen matrix; Poly (lactic acid).