Physiologic Doses of TGF-β Improve the Composition of Engineered Articular Cartilage

bioRxiv [Preprint]. 2023 Sep 29:2023.09.27.559554. doi: 10.1101/2023.09.27.559554.

Abstract

For cartilage regeneration applications, transforming growth factor beta (TGF-β) is conventionally administered at highly supraphysiologic doses (10-10,000 ng/mL) in an attempt to cue cells to fabricate neocartilage that matches the composition, structure, and functional properties of native hyaline cartilage. While supraphysiologic doses enhance ECM biosynthesis, they are also associated with inducing detrimental tissue features, such as fibrocartilage matrix deposition, pathologic-like chondrocyte clustering, and tissue swelling. Here we investigate the hypothesis that moderated TGF-β doses (0.1-1 ng/mL), akin to those present during physiological cartilage development, can improve neocartilage composition. Variable doses of media-supplemented TGF-β were administered to a model system of reduced-size cylindrical constructs (Ø2-Ø3 mm), which mitigate the TGF-β spatial gradients observed in conventional-size constructs (Ø4-Ø6 mm), allowing for a novel assessment of the intrinsic effect of TGF-β doses on macroscale neocartilage properties and composition. The administration of physiologic TGF-β to reduced-size constructs yields neocartilage with native-matched sGAG content and mechanical properties while providing a more hyaline cartilage-like composition, marked by: 1) reduced fibrocartilage-associated type I collagen, 2) 77% reduction in the fraction of cells present in a clustered morphology, and 3) 45% reduction in the degree of tissue swelling. Physiologic TGF-β appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating hyaline cartilage compositional deficits. These results can guide the development of novel physiologic TGF-β-delivering scaffolds to improve the regeneration clinical-sized neocartilage tissues.

Publication types

  • Preprint