Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles

Adv Sci (Weinh). 2023 Dec;10(34):e2302461. doi: 10.1002/advs.202302461. Epub 2023 Oct 9.

Abstract

In the quest to produce artificial cells, one key challenge that remains to be solved is the recreation of a complex cellular membrane. Among the existing models, giant unilamellar vesicles (GUVs) are particularly interesting due to their intrinsic compartmentalisation ability and their resemblance in size and shape to eukaryotic cells. Many techniques have been developed to produce GUVs all having inherent advantages and disadvantages. Here, the authors show that fluorinated silica nanoparticles (FNPs) used to form Pickering emulsions in a fluorinated oil can destabilise lipid nanosystems to template the formation of GUVs. This technique enables GUV production across a broad spectrum of buffer conditions, while preventing the leakage of the encapsulated components into the oil phase. Furthermore, a simple centrifugation process is sufficient for the release of the emulsion-trapped GUVs, bypassing the need to use emulsion-destabilising chemicals. With fluorescent FNPs and transmission electron microscopy, the authors confirm that FNPs are efficiently removed, producing contaminant-free GUVs. Further experiments assessing the lateral diffusion of lipids and unilamellarity of the GUVs demonstrate that they are comparable to GUVs produced via electroformation. Finally, the ability of incorporating transmembrane proteins is demonstrated, highlighting the potential of this method for the production of GUVs for artificial cell applications.

Keywords: artificial cells; giant unilamellar vesicles (GUVs); pickering emulsions.

MeSH terms

  • Artificial Cells*
  • Cell Membrane
  • Emulsions
  • Membrane Proteins
  • Unilamellar Liposomes*

Substances

  • Unilamellar Liposomes
  • Emulsions
  • Membrane Proteins