Mechanism of the noncatalytic oxidation of soot using in situ transmission electron microscopy

Nat Commun. 2023 Oct 6;14(1):6256. doi: 10.1038/s41467-023-41726-4.

Abstract

Soot generation is a major challenge in industries. The elimination of soot is particularly crucial to reduce pollutant emissions and boost carbon conversion. The mechanisms for soot oxidation are complex, with quantified models obtained under in situ conditions still missing. We prepare soot samples via noncatalytic partial oxidation of methane. Various oxidation models are established based on the results of in situ transmission electron microscopy experiments. A quantified maturity parameter is proposed and used to categorize the soot particles according to the nanostructure at various maturity levels, which in turn lead to different oxidation mechanisms. To tackle the challenges in the kinetic analysis of soot aggregates, a simplification model is proposed and soot oxidation rates are quantified. In addition, a special core-shell separation model is revealed through in situ analysis and kinetic studies. In this study, we obtain important quantified models for soot oxidation under in situ conditions.