Proteomic Indicators of Health Predict Alzheimer's Disease Biomarker Levels and Dementia Risk

Ann Neurol. 2024 Feb;95(2):260-273. doi: 10.1002/ana.26817. Epub 2023 Nov 2.

Abstract

Objective: Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration.

Methods: In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-β [Aβ]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aβ and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk.

Results: Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aβ42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aβ42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease.

Interpretation: Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.

MeSH terms

  • Adult
  • Alzheimer Disease* / diagnostic imaging
  • Amyloid beta-Peptides
  • Biomarkers
  • Cardiovascular Diseases*
  • Humans
  • Kidney Diseases*
  • Neurodegenerative Diseases*
  • Proteomics
  • tau Proteins

Substances

  • Amyloid beta-Peptides
  • Biomarkers
  • tau Proteins