Consequences and Control of Multiscale Order/Disorder in Chiral Magnetic Textures

ACS Nano. 2023 Oct 24;17(20):19865-19876. doi: 10.1021/acsnano.3c04203. Epub 2023 Oct 6.

Abstract

Transition metal intercalated transition metal dichalcogenides (TMDs) are promising platforms for next-generation spintronic devices based on their wide range of electronic and magnetic phases, which can be tuned by varying the host lattice or intercalant's identity, stoichiometry, or spatial order. Some of these compounds host a chiral magnetic phase in which the helical winding of magnetic moments propagates along a high-symmetry crystalline axis. Previous studies have demonstrated that variation in intercalant concentrations can have a dramatic effect on the formation of chiral domains and ensemble magnetic properties. However, a systematic and comprehensive study of how atomic-scale order and disorder impact these chiral magnetic textures is so far lacking. Here, we leverage a combination of imaging modes in the (scanning) transmission electron microscope (S/TEM) to directly probe (dis)order across multiple length scales and show how subtle changes in the atomic lattice can tune the mesoscale spin textures and bulk magnetic response in Cr1/3NbS2, with direct implications for the fundamental understanding and technological implementation of such compounds.

Keywords: Lorentz TEM; chiral soliton lattice; helimagnet; intercalated transition metal dichalcogenides; scanning transmission electron microscopy.