Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan

Hum Brain Mapp. 2023 Dec 1;44(17):5906-5918. doi: 10.1002/hbm.26484. Epub 2023 Oct 6.

Abstract

Age-related variations in many regions and/or networks of the human brain have been uncovered using resting-state functional magnetic resonance imaging. However, these findings did not account for the dynamical effect the brain's global activity (global signal [GS]) causes on local characteristics, which is measured by GS topography. To address this gap, we tested GS topography including its correlation with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS topography and its variation with age showed frequency-specific patterns, reflecting the spatiotemporal characteristics of the dynamic change of GS topography with age. A general trend toward dedifferentiation of GS topography with age was observed in both spatial (i.e., less differences of GS between different regions) and temporal (i.e., less differences of GS between different frequencies) dimensions. Further, methodological control analyses suggested that although most age-related dedifferentiation effects remained across different preprocessing strategies, some were triggered by neuro-vascular coupling and physiological noises. Together, these results provide the first evidence for age-related effects on global brain activity and its topographic-dynamic representation in terms of spatiotemporal dedifferentiation.

Keywords: brain aging; fMRI; global signal topography; lifespan; spatiotemporal dedifferentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / physiology
  • Brain Mapping* / methods
  • Cross-Sectional Studies
  • Humans
  • Longevity*
  • Magnetic Resonance Imaging / methods