Life history strategies of soil bacterial communities across global terrestrial biomes

Nat Microbiol. 2023 Nov;8(11):2093-2102. doi: 10.1038/s41564-023-01465-0. Epub 2023 Oct 5.

Abstract

The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities. The emerging patterns show a triangle of life history strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and expanded metabolic capacities. As metabolic capacities expand, bacterial communities increasingly differentiate along a second dimension that reflects a trade-off between increasing capacities for environmental responsiveness or for nutrient recycling. Random forest analyses show that soil pH, C:N ratio and precipitation patterns together drive the dominant life history strategy of soil bacterial communities and their biogeographic distribution. Our findings provide a trait-based framework to compare life history strategies of soil bacteria.

MeSH terms

  • Bacteria
  • Ecosystem
  • Life History Traits*
  • Soil / chemistry
  • Soil Microbiology

Substances

  • Soil