A Highly Luminescent Metallo-Supramolecular Radical Cage

J Am Chem Soc. 2023 Nov 8;145(44):24081-24088. doi: 10.1021/jacs.3c07477. Epub 2023 Oct 5.

Abstract

Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage (LMRC) constructed by the assembly of a tritopic terpyridinyl ligand RL with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn2+. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. LMRC exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of RL; meanwhile, LMRC also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration LMRC (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped LMRC film vanishes, revealing negligible spin-spin interactions between two radical centers in LMRC.