Surface Engineering of Methylammonium Lead Bromide Perovskite Crystals for Enhanced X-ray Detection

J Phys Chem Lett. 2023 Oct 12;14(40):9136-9144. doi: 10.1021/acs.jpclett.3c02061. Epub 2023 Oct 5.

Abstract

The surface quality of lead halide perovskite crystals can extremely influence their optoelectronic properties and device performance. Here, we report a surface engineering crystallization technique in which we in situ grow a polycrystalline methylammonium lead tribromide (MAPbBr3) film on top of bulk mm-sized single crystals. Such MAPbBr3 crystals with a MAPbBr3 passivating film display intense green emission under UV light. X-ray photoelectron spectroscopy demonstrates that these crystals with emissive surfaces are compositionally different from typical MAPbBr3 crystals that show no emission under UV light. Time-resolved photoluminescence and electrical measurements indicate that the MAPbBr3 film/MAPbBr3 crystals possess less surface defects compared to the bare MAPbBr3 crystals. Therefore, X-ray detectors fabricated using the surface-engineered MAPbBr3 crystals provide an almost 5 times improved sensitivity to X-rays and a more stable baseline drift with respect to the typical MAPbBr3 crystals.