Impacts of exposure to humidex on cardiovascular mortality: a multi-city study in Southwest China

BMC Public Health. 2023 Oct 4;23(1):1916. doi: 10.1186/s12889-023-16818-x.

Abstract

Background: Many studies have reported the association between ambient temperature and mortality from cardiovascular disease (CVD). However, the health effects of humidity are still unclear, much less the combined effects of temperature and humidity. In this study, we used humidex to quantify the effect of temperature and humidity combined on CVD mortality.

Methods: Daily meteorological, air pollution, and CVD mortality data were collected in four cities in southwest China. We used a distributed lag non-linear model (DLNM) in the first stage to assess the exposure-response association between humidex and city-specific CVD mortality. A multivariate meta-analysis was conducted in the second stage to pool these effects at the overall level. To evaluate the mortality burden of high and low humidex, we determined the attributable fraction (AF). According to the abovementioned processes, stratified analyses were conducted based on various demographic factors.

Results: Humidex and the CVD exposure-response curve showed an inverted "J" shape, the minimum mortality humidex (MMH) was 31.7 (77th percentile), and the cumulative relative risk (CRR) was 2.27 (95% confidence interval [CI], 1.76-2.91). At extremely high and low humidex, CRRs were 1.19 (95% CI, 0.98-1.44) and 2.52 (95% CI, 1.88-3.38), respectively. The burden of CVD mortality attributed to non-optimal humidex was 21.59% (95% empirical CI [eCI], 18.12-24.59%), most of which was due to low humidex, with an AF of 20.16% (95% eCI, 16.72-23.23%).

Conclusions: Low humidex could significantly increase the risk of CVD mortality, and vulnerability to humidex differed across populations with different demographic characteristics. The elderly (> 64 years old), unmarried people, and those with a limited level of education (1-9 years) were especially susceptible to low humidex. Therefore, humidex is appropriate as a predictor in a CVD early-warning system.

Keywords: Cardiovascular disease; Comprehensive Index; Humidex; Humidity; Temperature.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Cardiovascular Diseases*
  • China / epidemiology
  • Cities / epidemiology
  • Humans
  • Humidity
  • Middle Aged
  • Temperature