3D-Architected Alkaline-Earth Perovskites

Adv Mater. 2024 Mar;36(11):e2307077. doi: 10.1002/adma.202307077. Epub 2024 Jan 6.

Abstract

3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO3 , CaZrO3 , and SrZrO3 ) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO3 , CaZrO3 , and SrZrO3 . From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.

Keywords: 3D printing; additive manufacturing; functional materials; optical properties; perovskites.