Mechanisms of point defect formation and ionic conduction in divalent cation-doped lanthanum oxybromide: first-principles and experimental study

Dalton Trans. 2023 Oct 24;52(41):14822-14829. doi: 10.1039/d3dt01640d.

Abstract

The ionic conduction mechanism in M2+-doped (M: Mg, Ca, Zn, and Sr) lanthanum oxybromide (LaOBr) was investigated theoretically and experimentally. Formation energy calculations of point defects revealed that Br- ion vacancies and substitutional M2+ ions were the major point defects in M2+-doped LaOBr, while Br- ion vacancies and antisite O2- ions at Br sites were the major defect types in pure LaOBr. In the relaxed point defect models, doped Mg2+ and Zn2+ ions were displaced from the initial positions of the La3+ ions, and this was experimentally supported by crystal structural analysis. These significant atomic shifts were probably due to the strong interactions between Br- and the dopant ions. First-principles calculations and experimental analyses using X-ray photoelectron spectroscopy and X-ray absorption fine-structure spectroscopy also suggested the existence of strong interactions. The migration energy of Br- ions was calculated to be 0.53 eV, while the migration energy of O2- ions was 0.92 eV, implying that Br- ion migration via a vacancy system was more probable than O2- ion migration. The calculated association energies between MLa and VBr were 0.4-0.6 eV, suggesting that the association needed to be disrupted for Br- ion conduction. The sum of the association and migration energies was comparable to the experimental association energies of M2+-doped LaOBr.