Substitutional doping of MoTe2/ZrS2 heterostructures for sustainable energy related applications

Phys Chem Chem Phys. 2023 Oct 18;25(40):27017-27026. doi: 10.1039/d3cp03563h.

Abstract

Stacking and/or substitutional doping are effective strategies to tune two-dimensional materials with desired properties, greatly extending the applications of the pristine materials. Here, by employing first-principles calculations, we propose that a pristine MoTe2/ZrS2 heterostructure is a distinguished lithium-ion battery anode material with a low Li diffusion barrier (∼0.26 eV), and it has a high maximum Li storage capacity (476.36 mA h g-1) and a relatively low open-circuit voltage (0.16 V) at Li4/MoTe2/Li/ZrS2/Li4. The other heterostructures with different types can be achieved by substitutional doping and their potential applications in sustainable energy related areas are further unraveled. For instance, a type-II TeMoSe/ZrS2 heterostructure could be a potential direct Z-scheme photocatalyst for water splitting with a high solar-to-hydrogen conversion efficiency of 17.62%. The TeMoSe/SZrO heterostructure is predicted to be a potential candidate for application in highly efficient solar cells. Its maximum power conversion efficiency can be as high as 19.21%, which is quite promising for commercial applications. The present results will shed light on the sustainable energy applications of pristine or doped MoTe2/ZrS2 heterostructures in the future.