Climate trends and maize production nexus in Mississippi: empirical evidence from ARDL modelling

Sci Rep. 2023 Oct 3;13(1):16641. doi: 10.1038/s41598-023-43528-6.

Abstract

Climate change poses a significant threat to agriculture. However, climatic trends and their impact on Mississippi (MS) maize (Zea mays L.) are unknown. The objectives were to: (i) analyze trends in climatic variables (1970 to 2020) using Mann-Kendall and Sen slope method, (ii) quantify the impact of climate change on maize yield in short and long run using the auto-regressive distributive lag (ARDL) model, and (iii) categorize the critical months for maize-climate link using Pearson's correlation matrix. The climatic variables considered were maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), precipitation (PT), relative humidity (RH), and carbon emissions (CO2). The pre-analysis, post-analysis, and model robustness statistical tests were verified, and all conditions were met. A significant upward trend in Tmax (0.13 °C/decade), Tmin (0.27 °C/decade), and CO2 (5.1 units/decade), and a downward trend in DTR ( - 0.15 °C/decade) were noted. The PT and RH insignificantly increased by 4.32 mm and 0.11% per decade, respectively. The ARDL model explained 76.6% of the total variations in maize yield. Notably, the maize yield had a negative correlation with Tmax for June, and July, with PT in August, and with DTR for June, July, and August, whereas a positive correlation was noted with Tmin in June, July, and August. Overall, a unit change in Tmax reduced the maize yield by 7.39% and 26.33%, and a unit change in PT reduced it by 0.65% and 2.69% in the short and long run, respectively. However, a unit change in Tmin, and CO2 emissions increased maize yield by 20.68% and 0.63% in the long run with no short run effect. Overall, it is imperative to reassess the agronomic management strategies, developing and testing cultivars adaptable to the revealed climatic trend, with ability to withstand severe weather conditions in ensuring sustainable maize production.

MeSH terms

  • Agriculture / methods
  • Carbon Dioxide* / analysis
  • Climate Change
  • Mississippi
  • Weather
  • Zea mays*

Substances

  • Carbon Dioxide