Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food

Sci Rep. 2023 Oct 3;13(1):16601. doi: 10.1038/s41598-023-43752-0.

Abstract

Lactic acid bacteria (LAB) are of major concern due to their health benefits. Fermented food products comprise variable LAB demonstrating probiotic properties. Discovering and evaluating new probiotics in fermented food products poses a global economic and health importance. Therefore, the present work aimed to investigate and evaluate the probiotic potentials of LAB strains isolated from Egyptian fermented food. In this study, we isolated and functionally characterized 100 bacterial strains isolated from different Egyptian fermented food sources as probiotics. Only four LAB strains amongst the isolated LAB showed probiotic attributes and are considered to be safe for their implementation as feed or dietary supplements. Additionally, they were shown to exert antimicrobial activities against pathogenic bacteria and anticancer effects against the colon cancer cell line Caco-2. The Enterococcus massiliensis IS06 strain was exclusively reported in this study as a probiotic strain with high antimicrobial, antioxidant, and anti-colon cancer activity. Hitherto, few studies have focused on elucidating the impact of probiotic supplementation in vivo. Therefore, in the current study, the safety of the four strains was tested in vivo through the supplementation of rats with potential probiotic strains for 21 days. The results revealed that probiotic bacterial supplementation in rats did not adversely affect the general health of rats. The Lactiplantibacillus plantarum IS07 strain significantly increased the growth performance of rats. Furthermore, the four strains exhibited increased levels of antioxidants such as superoxide dismutase and glutathione in vivo. Consistently, all strains also showed high antioxidant activity of the superoxide dismutase enzyme in vitro. Overall, these findings demonstrated that these isolated potential probiotics harbor desirable characteristics and can be applied widely as feed additives for animals or as dietary supplements for humans to exert their health benefits and combat serious diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Infective Agents*
  • Caco-2 Cells
  • Egypt
  • Fermented Foods* / microbiology
  • Humans
  • Lactobacillales*
  • Probiotics* / metabolism
  • Rats
  • Superoxide Dismutase

Substances

  • Anti-Infective Agents
  • Superoxide Dismutase