Longer Periods of Hypothermia Provide Greater Protection Against Focal Ischemia: A Systematic Review of Animal Studies Manipulating Treatment Duration

Ther Hypothermia Temp Manag. 2023 Oct 3. doi: 10.1089/ther.2023.0042. Online ahead of print.

Abstract

Decades of animal research show therapeutic hypothermia (TH) to be potently neuroprotective after cerebral ischemic injuries. While there have been some translational successes, clinical efficacy after ischemic stroke is unclear. One potential reason for translational failures could be insufficient optimization of dosing parameters. In this study, we conducted a systematic review of the PubMed database to identify all preclinical controlled studies that compared multiple TH durations following focal ischemia, with treatment beginning at least 1 hour after ischemic onset. Six studies met our inclusion criteria. In these six studies, six of seven experiments demonstrated an increase in cerebroprotection at the longest duration tested. The average effect size (mean Cohen's d ± 95% confidence interval) at the shortest and longest durations was 0.4 ± 0.3 and 1.9 ± 1.1, respectively. At the longest durations, this corresponded to percent infarct volume reductions between 31.2% and 83.9%. Our analysis counters previous meta-analytic findings that there is no relationship, or an inverse relationship between TH duration and effect size. However, underreporting often led to high or unclear risks of bias for each study as gauged by the SYRCLE Risk of Bias tool. We also found a lack of investigations of the interactions between duration and other treatment considerations (e.g., method, delay, and ischemic severity). With consideration of methodological limitations, an understanding of the relationships between treatment parameters is necessary to determine proper "dosage" of TH, and should be further studied, considering clinical failures that contrast with strong cerebroprotective results in most animal studies.

Keywords: cerebroprotection; dose–response; ischemic stroke; neuroprotection; systematic review; therapeutic hypothermia.