Closed-loop modulation of model parkinsonian beta oscillations based on CAR-fuzzy control algorithm

Cogn Neurodyn. 2023 Oct;17(5):1185-1199. doi: 10.1007/s11571-022-09820-3. Epub 2022 Jun 18.

Abstract

Closed-loop deep brain stimulation (DBS) can apply on-demand stimulation based on the feedback signal (e.g. beta band oscillation), which is deemed to lower side effects of clinically used open-loop DBS. To facilitate the application of model-based closed-loop DBS in clinical, studies must consider state variations, e.g., variation of desired signal with different movement conditions and variation of model parameters with time. This paper proposes to use the controlled autoregressive (CAR)-fuzzy control algorithm to modulate the pathological beta band (13-35 Hz) oscillation of a basal ganglia-cortex-thalamus model. The CAR model is used to identify the relationship between DBS frequency parameter and beta oscillation power. Then the error between the one-step-ahead predicted beta power of CAR model and the desired value is innovatively used as the input of fuzzy controller to calculate the next step stimulation frequency. Compared with 130 Hz open-loop DBS, the proposed closed-loop DBS method could lower the mean stimulation frequency to 74.04 Hz with similar beta oscillation suppression performance. The Mamdani fuzzy controller is selected because which could establish fuzzy controller rules according to human operation experience. Adding prediction module to closed-loop control improves the accuracy of fuzzy control, compared with proportional-integral control and fuzzy control, the proposed CAR-fuzzy control algorithm has higher tracking reliability, response speed and robustness.

Keywords: Beta oscillation power; Closed-loop deep brain stimulation; Controlled autoregressive model; Fuzzy control; One-step-ahead prediction; Parkinson's disease.