3D Convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification

Cogn Neurodyn. 2023 Oct;17(5):1357-1380. doi: 10.1007/s11571-022-09906-y. Epub 2022 Nov 2.

Abstract

Recently, deep learning-based methods have achieved meaningful results in the Motor imagery electroencephalogram (MI EEG) classification. However, because of the low signal-to-noise ratio and the various characteristics of brain activities among subjects, these methods lack a subject adaptive feature extraction mechanism. Another issue is that they neglect important spatial topological information and the global temporal variation trend of MI EEG signals. These issues limit the classification accuracy. Here, we propose an end-to-end 3D CNN to extract multiscale spatial and temporal dependent features for improving the accuracy performance of 4-class MI EEG classification. The proposed method adaptively assigns higher weights to motor-related spatial channels and temporal sampling cues than the motor-unrelated ones across all brain regions, which can prevent influences caused by biological and environmental artifacts. Experimental evaluation reveals that the proposed method achieved an average classification accuracy of 93.06% and 97.05% on two commonly used datasets, demonstrating excellent performance and robustness for different subjects compared to other state-of-the-art methods.In order to verify the real-time performance in actual applications, the proposed method is applied to control the robot based on MI EEG signals. The proposed approach effectively addresses the issues of existing methods, improves the classification accuracy and the performance of BCI system, and has great application prospects.

Keywords: 3D CNN; Attention mechanism; EEG; Motor imagery; Spatial and temporal dependencies.