Mass transfer vectors for nitric oxide removal through biological treatments

Environ Sci Pollut Res Int. 2023 Nov;30(51):110089-110103. doi: 10.1007/s11356-023-30009-6. Epub 2023 Oct 2.

Abstract

The reduction of nitric oxide (NO) emissions to atmosphere has been recently addressed using biological technologies. However, NO removal through bioprocesses is quite challenging due to the low solubility of NO in water. Therefore, the abatement of NO emissions might be improved by adding a chelating agent or a mass transfer vector (MTV) to increase the solubility of this pollutant into the aqueous phase where the bioprocess takes place. This research seeks to assess the performance of different non-aqueous phase liquids (NAPs): n-hexadecane (HEX), diethyl sebacate (DSE), 1,1,1,3,5,5,5-heptamethyl-trisiloxane (HTX), 2,2,4,4,6,8,8-heptamethylnonane (HNO), and high temperature silicone oil (SO) in chemical absorption-biological reduction (CABR) integrated systems. The results showed that HNO and HTX had the maximum gas-liquid mass transfer capacity, being 0.32 mol NO/kmol NAP and 0.29 mol NO/kmol NAP, respectively. When an aqueous phase was added to the system, the mass transfer gas-liquid of NO was increased, with HTX reaching a removal efficiency of 82 ± 3% NO with water, and 88 ± 6% with a phosphate buffer solution. All NAPs were tested for short-term toxicity assessment and resulted neither toxic nor inhibitory for the biological activity (denitrification). DSE was found to be biodegradable, which could limit its applicability in biological processes for gas treatment. Finally, in the CABR system tests, it was shown that NO elimination improved in a short time (30 min) when the three mass transfer vectors (HEX, HTX, HNO) were added to enriched denitrifying bacteria.

Keywords: Air pollution; Biological treatment; Chemical absorption–biological reduction; Mass transfer vectors; Nitric oxide; Non-aqueous phase liquids.

MeSH terms

  • Bioreactors* / microbiology
  • Nitric Oxide*
  • Water

Substances

  • Nitric Oxide
  • Water