Synthesis and Ligand Properties of Chelating Bis(N-heterocyclic carbene)-Stabilized Bis(phosphinidenes)

Inorg Chem. 2023 Oct 16;62(41):16832-16841. doi: 10.1021/acs.inorgchem.3c02264. Epub 2023 Oct 2.

Abstract

NHC-phosphinidene (NHCP) adducts are an emerging class of ligands with proven binding ability for main group and transition metal elements. They possess electron-rich P atoms with two lone pairs (LPs) of electrons, making them interesting platforms for the formation of multimetallic complexes. We describe herein a modular, high-yielding synthesis of bis(NHCP)s, starting from alkylidene-bridged bis(NHC)s ((IMe)2CnH2n; n = 1,3) and triphosphirane (PDip)3 (Dip = 2,6-iPr2C6H3) as phosphinidene transfer reagent. The coordination chemistry of [{DipP(IMe)}2CH2], 1, was studied in detail, and complexes [1·FeBr2] and [1·Rh(cod)]Cl were prepared, showing that the ligand has a flexible bite angle. The dicarbonyl complex [1·Rh(CO)2]Cl, with an average value for the CO stretching frequency of 2029 cm-1, indicates a strongly donating ligand when compared to related complexes. The binding ability of the remaining two phosphorus LPs was demonstrated with AuCl(SMe2), giving the heterotrimetallic complex [1·(AuCl)2·Rh(cod)]Cl. Moreover, [1·Rh(cod)]X (X- = Cl, B(3,5-(CF3)2-C6H3)4) was tested in the catalytic hydrogenation of methyl-Z-α-acetamidocinnamate (MAC) and dimethyl itaconate (ItMe2), revealing that the chloride complex was inactive, while the BArF complex demonstrated moderate activity. Additionally, [1·Rh(cod)]Cl was shown to be moderately air- and moisture-stable, slowly decomposing to the corresponding NHC-stabilized bis-dioxophosphorane, which was independently synthesized by treating the free ligand with dry O2.