Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry

Biosci Rep. 2023 Oct 31;43(10):BSR20231093. doi: 10.1042/BSR20231093.

Abstract

Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.

Keywords: cell cycle; chromatin; epigenetics; mass spectrometry; molecular dynamics; protein-protein interactions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinogenesis
  • Cell Cycle
  • Cell Division
  • Histocompatibility Antigens
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism
  • Histones* / genetics
  • Histones* / metabolism
  • Humans
  • Lysine* / metabolism

Substances

  • Histones
  • Lysine
  • EHMT2 protein, human
  • Histocompatibility Antigens
  • Histone-Lysine N-Methyltransferase