Boosted Additive Angular Margin Loss for breast cancer diagnosis from histopathological images

Comput Biol Med. 2023 Sep 22:166:107528. doi: 10.1016/j.compbiomed.2023.107528. Online ahead of print.

Abstract

Pathologists use biopsies and microscopic examination to accurately diagnose breast cancer. This process is time-consuming, labor-intensive, and costly. Convolutional neural networks (CNNs) offer an efficient and highly accurate approach to reduce analysis time and automate the diagnostic workflow in pathology. However, the softmax loss commonly used in existing CNNs leads to noticeable ambiguity in decision boundaries and lacks a clear constraint for minimizing within-class variance. In response to this problem, a solution in the form of softmax losses based on angular margin was developed. These losses were introduced in the context of face recognition, with the goal of integrating an angular margin into the softmax loss. This integration improves discrimination features during CNN training by effectively increasing the distance between different classes while reducing the variance within each class. Despite significant progress, these losses are limited to target classes only when margin penalties are applied, which may not lead to optimal effectiveness. In this paper, we introduce Boosted Additive Angular Margin Loss (BAM) to obtain highly discriminative features for breast cancer diagnosis from histopathological images. BAM not only penalizes the angle between deep features and their target class weights, but also considers angles between deep features and non-target class weights. We performed extensive experiments on the publicly available BreaKHis dataset. BAM achieved remarkable accuracies of 99.79%, 99.86%, 99.96%, and 97.65% for magnification levels of 40X, 100X, 200X, and 400X, respectively. These results show an improvement in accuracy of 0.13%, 0.34%, and 0.21% for 40X, 100X, and 200X magnifications, respectively, compared to the baseline methods. Additional experiments were performed on the BACH dataset for breast cancer classification and on the widely accepted LFW and YTF datasets for face recognition to evaluate the generalization ability of the proposed loss function. The results show that BAM outperforms state-of-the-art methods by increasing the decision space between classes and minimizing intra-class variance, resulting in improved discriminability.

Keywords: Angular margin-based softmax loss; BreakHis; Breast cancer; Deep learning; Histopathology image; Medical image analysis.