Catalytic Asymmetric Oxidation of Amines to Hydroxylamines

J Am Chem Soc. 2023 Oct 11;145(40):22276-22283. doi: 10.1021/jacs.3c09172. Epub 2023 Sep 29.

Abstract

Chiral hydroxylamines are increasingly common structural elements in pharmaceuticals and agrochemicals, but their asymmetric synthesis remains challenging. Although enantioselective oxidation is the most straightforward method to prepare chiral oxides with a higher oxidation state, asymmetric and even nonasymmetric amine oxidation to hydroxylamines has been poorly addressed. We report a titanium-catalyzed asymmetric oxidation of racemic amines providing a broad range of structurally diverse chiral hydroxylamines with excellent chemo- and enantioselectivity. Notably, hydroxylamines bearing diverse substituent patterns on the stereocenters, including α,α-ester-alkyl, α,α-amide-alkyl, α,α-aryl-alkyl, α,α-alkynyl-alkyl, and α,α-dialkyl, are well tolerated with good functional group compatibility. Catalyst turnover numbers up to 5000 and selectivity factors up to 278 are observed. This finding offers a democratized platform to chiral hydroxylamines as design elements for drug discovery and provides insights into metal-catalyzed asymmetric oxidation of challenging substrates.