Cereibacter flavus sp. nov., a novel member of the family Rhodobacteraceae isolated from seawater of the South China Sea and reclassification of Rhodobacter alkalitolerans as Cereibacter alkalitolerans comb. nov

Int J Syst Evol Microbiol. 2023 Sep;73(9). doi: 10.1099/ijsem.0.006051.

Abstract

A Gram-stain-negative, aerobic, motile, ovoid-shaped and yellow-coloured strain, designated SYSU M79828T, was isolated from seawater collected from the South China Sea. Growth of this strain was observed at 4-37 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-6% NaCl (optimum, 3.0 %, w/v). The respiratory quinone was found to be Q-10. Major fatty acid constituents were C18 : 1 ω7c/C18 : 1 ω6c, C18 : 1 ω7c11-methyl and C18 : 0 (>5 % of total). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, two unidentified phospholipid, one unidentified lipid and an unidentified glycolipid. The genomic DNA G+C content was 64.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that strain SYSU M79828T belonged to the genus Cereibacter and had the highest sequences similarity to 'Rhodobacter xinxiangensis' TJ48T (98.41 %). Based on 16S rRNA gene phylogeny, physiological and chemotaxonomic characterizations, we consider that strain SYSU M79828T represents a novel species of the genus Cereibacter, for which the name Cereibacter flavus sp. nov. is proposed. The type strain is SYSU M79828T (=GDMCC 1.3803T=KCTC 92893T). In addition, according to the results of phylogenetic analysis and similar taxonomic characteristics, we propose that Rhodobacter alkalitolerans should be reclassified as Cereibacter alkalitolerans comb. nov.

Keywords: Cereibacter flavus sp. nov.; polyphasic taxonomy; seawater.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • China
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Rhodobacter
  • Rhodobacteraceae*
  • Seawater
  • Sequence Analysis, DNA

Substances

  • Fatty Acids
  • RNA, Ribosomal, 16S
  • DNA, Bacterial