Cover Crop and Crop Rotation Effects on Tissue and Soil Population Dynamics of Macrophomina phaseolina and Yield Under No-Till System

Plant Dis. 2024 Feb;108(2):302-310. doi: 10.1094/PDIS-03-23-0443-RE. Epub 2024 Feb 6.

Abstract

The effects of crop rotation and winter cover crops on soybean yield and colony-forming (CFU) units of Macrophomina phaseolina, the causal agent of charcoal rot (CR), are poorly understood. A field trial was conducted from 2011 to 2015 to evaluate (i) the impact of crop rotation consisting of soybean (Glycine max [L.] Merr.) following cotton (Gossypium hirsutum L.), soybean following corn (Zea mays L.), and soybean following soybean over a 2-year rotation and its interaction with cover crop and (ii) the impact of different cover crops on a continuous soybean crop over a 5-year period. This trial was conducted in a field with 10 subsequent years of cover crop and rotation treatments. Cover crops consisted of winter wheat (Triticum aestivum L.) and Austrian winter pea (Pisum sativum L. subsp. sativum var. arvense), hairy vetch (Vicia villosa Roth), and a fallow treatment was evaluated with and without poultry litter application (bio-cover). Tissue CFU of M. phaseolina varied significantly between crop rotation treatments: plots where soybean was grown following cotton had significantly greater tissue CFU than plots following soybean. Poultry litter and hairy vetch cover cropping caused increased tissue CFU, though this effect differed by year and crop rotation treatment. Soil CFU in 2015 was substantially lower compared with 2011. However, under some crop rotation sequences, plots in the fallow treatment had significantly greater soil CFU than plots where hairy vetch and wheat was grown as a cover crop. Yield was greater in 2015 compared with 2011. There was a significant interaction of the previous crop in the rotation with year, and greater yield was observed in plots planted following cotton in the rotation in 2015 but not in 2011. The result from the continuous soybean planted over 5 years showed that there were no significant overall effects of any of the cover crop treatments nor was there interaction between cover crop treatment and year on yield. The lack of significant interaction between crop rotation and cover crop and the absence of significant differences between cover crop treatments in continuous soybean planting suggest that cover crop recommendations for midsouthern soybean growers may need to be independent of crop rotation and be based on long-term crop needs.

Keywords: Glycine max; Macrophomina phaseolina; charcoal rot; cover crop; crop rotation; monoculture; no-till; soybean; yield.

MeSH terms

  • Agriculture
  • Ascomycota*
  • Crop Production
  • Crops, Agricultural
  • Glycine max
  • Soil*
  • Zea mays

Substances

  • Soil

Supplementary concepts

  • Macrophomina phaseolina