3,5-Dihydroxybenzoic Acid-Based Selective Dopamine Detection via Subsititution-Enhanced Kinetics Differences

Anal Chem. 2023 Oct 10;95(40):14944-14953. doi: 10.1021/acs.analchem.3c02313. Epub 2023 Sep 29.

Abstract

The selective recognition of dopamine (DA) over other neurotransmitter analogues is difficult due to the similar molecular structure and chemical reactivity. In this study, substitution-regulated chemical reactivity of the sensing substrate is utilized to explore a novel DA detection probe with satisfying selectivity. As a case study, 3,5-dihydroxybenzoic acid (DHBA, carboxy-substituted resorcinol)-based probes have been explored for selective and ratiometric DA sensing. The carboxy substitution benefits the stabilization of the carbanion intermediate and the azamonardine product, which enhances the reaction kinetics and thermodynamics and subsequently facilitates selective DA recognition over other analogues and interferents. By exploring DHBA emission as the internal reference, ratiometric fluorescence variation is realized, which contributes to sensitive DA analysis. With the combination of logic gate and fluorometric analysis, DA detection in both low and high concentrations can be readily achieved. In addition, the DA analysis in biological samples and the enzymatic transformation of DA analogues in cerebrospinal fluid samples are achieved by the proposed DHBA probe.