KCa3.1 regulates cell cycle progression by modulating Ca2+ signaling in murine preosteoblasts

J Pharmacol Sci. 2023 Nov;153(3):142-152. doi: 10.1016/j.jphs.2023.09.001. Epub 2023 Sep 6.

Abstract

Osteoblasts synthesize and deposit essential components of the extracellular bone matrix and collagen scaffolds, leading to mineralized bone formation. Therefore, the proliferation of preosteoblasts (precursors of mature osteoblasts) helps in regulating skeletal homeostasis. This study demonstrated that the functional expression of KCa3.1, an intermediate-conductance Ca2+-activated K+ channel, is markedly upregulated in murine preosteoblastic MC3T3-E1 cells in the G0/G1 phase. The enhancement of KCa3.1 is involved in the establishment of more negative membrane potentials in MC3T3-E1 cells. This hyperpolarization can promote intracellular Ca2+ signaling because store-operated Ca2+ channels are activated. Treatment with TRAM-34, a specific KCa3.1 inhibitor, attenuated the cell cycle progression from the G0/G1 phase to the S/G2/M phases. In MC3T3-E1 cells, KCa3.1 significantly promoted the transition from the G1 phase to the S phase. KCa3.1 inhibition also caused G0 phase cell accumulation. Furthermore, TRAM-34 decreased the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin, osteoblast differentiation markers in MC3T3-E1 cells, and inhibited the endochondral ossification of murine metatarsals. These results reveal novel ways by which KCa3.1 activity can strongly modulate osteoblast maturation during bone formation.

Keywords: Cell cycle; Cell proliferation; K(Ca)3.1; Mouse preosteoblast.