Effects of spike proteins on angiotensin converting enzyme 2 (ACE2)

Arch Biochem Biophys. 2023 Oct 15:748:109769. doi: 10.1016/j.abb.2023.109769. Epub 2023 Sep 27.

Abstract

The Coronavirus Disease 2019 (COVID-19) pandemic was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enters host cells through interactions of its spike protein to Angiotensin-Converting Enzyme 2 (ACE2). ACE2 is a peptidase that cleaves Angiotensin II, a critical pathological mediator. This study investigated if the spike protein binding to ACE2 compromises its peptidase activity. Spike/ACE2 Binding Assays suggested that spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, but not HKU1, bind to ACE2. S1 and receptor-binding domain (RBD), but not S2, extracellular domain (ECD) or CendR domain, bind to ACE2. While glycosylated spike proteins prepared in HEK293 cells bind to ACE2, non-glycosylated proteins produced in E. coli do not. Cysteine residues of the spike protein expressed in HEK293 cells are fully oxidized, while those of the protein expressed in E. coli are reduced. The deglycosylation of HEK cell-produced protein attenuates the ACE2 binding, while the oxidation of the E. coli protein does not promote the binding. The S1 protein of SARS-CoV-2 enhances the ACE2 peptidase activity, while SARS-CoV, MERS-CoV or HKU1 does not. The ACE2 activity is enhanced by RBD, but not ECD or CendR. In contrast to distinct ACE2 binding capacities of proteins expressed in HEK293 cells and in E. coli, spike proteins expressed in both systems enhance the ACE2 activity. Thus, the spike protein of SARS-CoV-2, but not other coronaviruses, enhances the ACE2 peptidase activity through its RBD in a glycosylation-independent manner.

Keywords: ACE2; COVID-19; Coronavirus; Peptidase; SARS-CoV-2; Spike protein.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Angiotensin-Converting Enzyme 2* / metabolism
  • COVID-19*
  • Escherichia coli / metabolism
  • HEK293 Cells
  • Humans
  • Protein Binding
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / metabolism

Substances

  • Angiotensin-Converting Enzyme 2
  • Spike Glycoprotein, Coronavirus
  • ACE2 protein, human