Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries

Ticks Tick Borne Dis. 2024 Jan;15(1):102268. doi: 10.1016/j.ttbdis.2023.102268. Epub 2023 Sep 26.

Abstract

Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.

Keywords: Anaplasma; Babesia; Camels; Meta-analysis; Theileria; Tick-borne pathogens.

Publication types

  • Meta-Analysis
  • Systematic Review
  • Review

MeSH terms

  • Anaplasma / genetics
  • Animals
  • Babesia* / genetics
  • Camelus
  • DNA
  • Dog Diseases* / epidemiology
  • Dogs
  • Ehrlichia
  • Ixodes* / microbiology
  • Prevalence
  • Rickettsia*
  • Seroepidemiologic Studies
  • Theileria annulata* / genetics
  • Tick-Borne Diseases* / epidemiology
  • Tick-Borne Diseases* / microbiology
  • Tick-Borne Diseases* / veterinary

Substances

  • DNA