Green Synthesis of ZnO/CuO Nanocomposites Using Parsley Extract for Potential In Vitro Anticoccidial Application

ACS Appl Bio Mater. 2023 Oct 16;6(10):4190-4199. doi: 10.1021/acsabm.3c00425. Epub 2023 Sep 28.

Abstract

In this study, a simple, low-cost, and environmentally friendly method for the green synthesis of ZnO/CuO nanocomposites (NCs) using parsley extract was developed. The phytochemical components in the parsley leaf extract reacted with precursor salts in solution and yielded ZnO/CuO NCs. The synthesis of the green-synthesized NCs was confirmed via various characterization techniques, including UV-vis spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). Subsequently, the NCs were subjected to rigorous in vitro evaluation of their anticoccidial properties. The results showed that the NCs had a spherical shape within an average particle size of around 70 nm. The green-synthesized NCs were evaluated for their in vitro anticoccidial activity against Eimeria spp. The findings showed that the NCs exhibited a significant anticoccidial effect, with a maximum inhibition of 55.3 ± 0.32% observed at a concentration of 0.5 mg/mL. The exposure to the NCs resulted in notable alterations in the ultrastructure of the oocysts when compared to the control group. The ZnO/CuO NCs synthesized from the parsley leaf extract showed promising potential against coccidiosis and could be used in biomedical applications. Further investigation using an in vivo model is required to ascertain the efficacy of NCs as anticoccidial agents.

Keywords: Eimeria spp; ZnO/CuO nanocomposites; anticoccidial activity; green synthesis; oocysts; parsley extract; sporulation.