High-Efficiency Narrow-Band Green-Emitting Manganese(II) Halide for Multifunctional Applications

ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47238-47249. doi: 10.1021/acsami.3c09518. Epub 2023 Sep 28.

Abstract

Zero-dimensional (0D) Mn2+-based metal halides used as luminescent materials and scintillators have become a research hotspot in the field of photoelectric materials and devices due to their unique composition, structure, and fluorescence properties. It is of great value to explore new Mn2+-based metal halides to achieve multifunctional applications. Herein, the novel 0D Mn2+-based metal halide single crystal (BPTP)2MnBr4 is synthesized by a simple solvent-antisolvent recrystallization method. Under excitation at 468 nm, the (BPTP)2MnBr4 single crystal shows a pronounced narrow-band green luminescence centered at 515 nm derived from the d-d transition of the Mn2+ ion. This emission has a relatively narrow full width at half maximum of 43 nm and a high photoluminescence quantum yield (PLQY) of 82%. In addition, (BPTP)2MnBr4 exhibits good thermal stability at 393 K with a retention of 79% of the initial photoluminescence intensity at 298 K. Benefiting from its strong blue light excitation, high PLQY, and good thermal stability, we manufacture an ideal white light-emitting diode (LED) device using a 460 nm blue LED chip, green-emitting (BPTP)2MnBr4, and commercial K2SiF6:Mn4+ red phosphor. Under 20 mA drive current, the LED shows a high luminous efficiency of 112 lm/W and a wide color gamut of 110.8%, according to the National Television System Committee standard. In addition, (BPTP)2MnBr4 crystals show a strong X-ray absorption. Based on the commercial Lu3Al5O12:Ce3+ scintillator, the calculated light yield of (BPTP)2MnBr4 reaches up to about 136,000 photons/MeV and the detection limit reaches 0.282 μGyair s-1. Additionally, a melt quenching approach is used to construct a (BPTP)2MnBr4 clear glass scintillation screen, realizing a spatial resolution of 10.1 lp/mm. The proper performances of (BPTP)2MnBr4 as phosphor-converted LED materials and the X-ray scintillator with the addition of eco-friendly, low-cost solution processability make 0D Mn2+-based metal halides potential luminescent materials for multifunctional applications.

Keywords: X-ray detection; backlight display; crystal structure; photoluminescence; zero-dimensional Mn2+-based halides.