Mechanism and Origins of Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis

J Org Chem. 2023 Oct 6;88(19):14115-14130. doi: 10.1021/acs.joc.3c01676. Epub 2023 Sep 27.

Abstract

The Ni-catalyzed alkylboration of endocyclic olefins is a stereo- and regioselective approach for the synthesis of boron-containing compounds. We report a detailed density functional theory (DFT) study to elucidate the mechanism and origins of the stereo-, chemo-, and regioselectivity of alkylboration of endocyclic olefins enabled by nickel catalysis. The alkylboration proceeds via the migratory insertion of alkenes, β-H elimination of the Ni(II) complex, subsequent migratory insertion leading to a new Ni(II) complex, combined with an alkyl radical, and reductive eliminations. The electronic effects of the endocyclic olefins synergistically control the regioselectivity toward the C1- and C2-position boration. In C1-position boration, a more electron-deficient carbon atom tends to combine with an electron-rich -Bpin group and leads to C1-position boration products. The stereoselectivity is influenced by the solvent effect, and the interaction between the substrate and Ni-catalyzed groups, the low-polarity solvent 1,4-dioxane, and a favorable steric hindrance effect result in the cis-alkylboration product. Chemoselectivity toward 1,3-alkylboration results from the steric hindrance effects of the -Bpin group.